Violympic toán 7

LM

CMR:

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

NH
12 tháng 9 2017 lúc 17:06

Ta có :

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.........+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.........+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+......+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+.......+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+......+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+.......+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+.....+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+......+\dfrac{1}{50}\)

Vậy ...

Bình luận (2)
MS
12 tháng 9 2017 lúc 17:03

Đặt:

\(PHUCDZ=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)

\(PHUCDZ=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(PHUCDZ=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{50}\right)\)

\(PHUCDZ=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\)

\(PHUCDZ=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{25}\right)\)

\(PHUCDZ=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

Đặt \(PHUCMAXDZ=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(PHUCDZ=PHUCMAXDZ\) vậy ta có \(đpcm\)

Bình luận (0)
HT
12 tháng 9 2017 lúc 17:08

Ta có : \(\dfrac{1}{1.2}\)+\(\dfrac{1}{3.4}\) + \(\dfrac{1}{5.6}\) +...+ \(\dfrac{1}{49.50}\)

= (1-\(\dfrac{1}{2}\)) + (\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)) + (\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)) + ... + (\(\dfrac{1}{49}\)-\(\dfrac{1}{50}\))

= (1+\(\dfrac{1}{3}\) +\(\dfrac{1}{5}\)+....+\(\dfrac{1}{49}\)) - ( \(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{6}\)+...+\(\dfrac{1}{50}\))

=(1+\(\dfrac{1}{3}\)+\(\dfrac{1}{5}\)+...+\(\dfrac{1}{49}\)) - 2(\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{6}\)+...+\(\dfrac{1}{50}\))

= (1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+...+\(\dfrac{1}{50}\)) - (1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+...+\(\dfrac{1}{25}\))

=\(\dfrac{1}{26}\)+\(\dfrac{1}{27}\)+...+\(\dfrac{1}{50}\) (đpcm)

Bình luận (0)
DT
30 tháng 12 2017 lúc 19:48

undefined

Bình luận (0)

Các câu hỏi tương tự
KH
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
CC
Xem chi tiết
MP
Xem chi tiết
NM
Xem chi tiết