Violympic toán 7

ND

CMR : \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

KT
8 tháng 3 2017 lúc 17:57

Ta có:

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\left(đpcm\right)\)

Bình luận (1)
ND
11 tháng 4 2017 lúc 22:32

Cảm ơn K tồn tại nhiều lắm nhưng ở bài của bn k có tick đúng vs bình luận.gianroi

Bình luận (1)

Các câu hỏi tương tự
LM
Xem chi tiết
KH
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
CC
Xem chi tiết
MP
Xem chi tiết
NM
Xem chi tiết
LT
Xem chi tiết