Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

TY

CMR : a,b,c >0

1,\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\dfrac{>}{ }\dfrac{a+b+c}{2}\)

2,\(\dfrac{a+b}{a^2+b^2}+\dfrac{b+c}{b^2+c^2}+\dfrac{a+c}{a^2+c^2}\dfrac{< }{ }\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

HP
30 tháng 1 2021 lúc 12:09

1.

 Áp dụng BĐT BSC:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

Đẳng thức xảy ra khi \(a=b=c>0\)

2.

Áp dụng BĐT \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\) và BĐT BSC:

\(\dfrac{a+b}{a^2+b^2}+\dfrac{b+c}{b^2+c^2}+\dfrac{c+a}{c^2+a^2}\)

\(\le\dfrac{a+b}{\dfrac{\left(a+b\right)^2}{2}}+\dfrac{b+c}{\dfrac{\left(b+c\right)^2}{2}}+\dfrac{c+a}{\dfrac{\left(c+a\right)^2}{2}}\)

\(=\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

\(\le2.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)\)

\(=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Đẳng thức xảy ra khi \(a=b=c>0\)

Bình luận (2)
HP
30 tháng 1 2021 lúc 12:12

Cách khác:

1.

 Áp dụng BĐT Cauchy:

\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}+\dfrac{b^2}{c+a}+\dfrac{c+a}{4}+\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\)

Đẳng thức xảy ra khi \(a=b=c>0\)

Bình luận (1)

Các câu hỏi tương tự
VT
Xem chi tiết
TY
Xem chi tiết
SC
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
KR
Xem chi tiết
SN
Xem chi tiết
KR
Xem chi tiết
VT
Xem chi tiết