Đại số lớp 7

LT

CMR a/ nếu 2^n - 1 chia hết 9 thì 2^n - 1 chia hết cho 7

b/Tìm số dư của phép chia 2^n-1 cho 21

AH
13 tháng 8 2017 lúc 16:18

Lời giải:

a) Vì \(2^6\equiv 1\pmod 9\) nên ta sẽ xét modulo $6$ của $n$

+ Nếu \(n=6k\) thì \(2^{n}-1=(2^6)^k-1\equiv 1^k-1\equiv 0\pmod 9\)

+ Nếu \(n=6k+1\Rightarrow 2^n-1=2.2^{6k}-1\equiv 2-1\equiv 1\pmod 9\)

+ Nếu \(n=6k+2\Rightarrow 2^{n}-1=2^2.2^{6k}-1\equiv 2^2-1\equiv 3\pmod 9\)

+ Nếu \(n=6k+3\Rightarrow 2^n-1=2^3.2^{6k}-1\equiv 2^3-1\equiv 7\pmod 9\)

+ Nếu \(n=6k+4\Rightarrow 2^n-1=2^4.2^{6k}-1\equiv 2^4-1\equiv 6\pmod 9\)

+ Nếu \(n=6k+5\Rightarrow 2^n-1=2^5.2^{6k}-1\equiv 2^5-1\equiv 4\pmod 9\)

Như vậy, số $n$ thỏa mãn \(2^n-1\vdots 9\) là số có dạng \(6k\)

Ta cũng có \(2^6\equiv 1\pmod 7\) nên

\(2^n-1=2^{6k}-1\equiv 1-1\equiv 0\pmod 7\)

Do đó, \(2^n-1\vdots 7\) (đpcm)

b) Tương tự phần a, để ý rằng \(2^6\equiv 1\pmod {21}\)

Ta xét modulo $6$ cho $n$ sẽ thu được những kết quả sau:

\(n=6k \Rightarrow 2^n-1\equiv 0\pmod {21}\)

\(n=6k+1\Rightarrow 2^n-1\equiv 1\pmod {21}\)

\(n=6k+2\Rightarrow 2^n-1\equiv 3\pmod {21}\)

\(n=6k+3\Rightarrow 2^n-1\equiv 7\pmod {21}\)

\(n=6k+4\Rightarrow 2^n-1\equiv 15\pmod {21}\)

\(n=6k+5\Rightarrow 2^n-1\equiv 10\pmod {21}\)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
SN
Xem chi tiết
LT
Xem chi tiết
HA
Xem chi tiết
AH
Xem chi tiết
BA
Xem chi tiết
PN
Xem chi tiết