Chương IV : Biểu thức đại số

NA

CMR :1/1^2 + 1/2^2 + 1/3^2 + ... + 1/n^2 < 5/3

AL
11 tháng 2 2019 lúc 13:44

Ta có \(a^2>a^2-1\forall a\)

\(\Rightarrow a^2>\left(a-1\right)\left(a+1\right)\)

\(\Rightarrow\dfrac{1}{a^2}< \dfrac{1}{\left(a-1\right)\left(a+1\right)}=\dfrac{1}{2}\cdot\left(\dfrac{1}{a-1}\right)\left(\dfrac{1}{a+1}\right)\)

Áp dụng, ta có

\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1+\dfrac{1}{2^2}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

= \(1+\dfrac{1}{2^2}+\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)

= 1+ \(\dfrac{1}{4}\)+\(\dfrac{1}{2}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

=1+ \(\dfrac{2}{3}-\dfrac{1}{2}\cdot\left(\dfrac{1}{n}+\dfrac{1}{n+1}\right)\) < \(1+\dfrac{2}{3}=\dfrac{5}{3}\left(ĐPCM\right)\)

Bình luận (2)

Các câu hỏi tương tự
TT
Xem chi tiết
JD
Xem chi tiết
DD
Xem chi tiết
TK
Xem chi tiết
QL
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
TK
Xem chi tiết
QL
Xem chi tiết