Bài 10: Tính chất chia hết của một tổng. Luyện tập

JK

CMR:

1. nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7

2. số có dạng \(\overline{aaa}\) bao giờ cũng chia hết cho 37

3. \(\overline{ab}\)-\(\overline{ba}\) bao giờ cũng chia hết cho 9

CV
16 tháng 7 2017 lúc 21:48

1. Ta có 14 và 28 có cùng số dư khi chia7 là 0

mà 28 - 14 = 14 chia hết cho 7 (đpcm)

2. Ta có : \(\overline{aaa}=\overline{a}.111\)

=> \(\overline{aaa}=\overline{a}.3.37⋮37\)

=> \(\overline{aaa}\) luôn chia hết cho 37 (đpcm)

Bình luận (0)
AH
16 tháng 7 2017 lúc 21:48

1, Gọi số thứ nhất có dạng 7k+n ; số thứ 2 có dạng 7x+n;

=> \(7k+n-\left(7x+n\right)=7k-7x=7\left(k-x\right)⋮7\)

2, Ta có: \(\overline{aaa}=100a+10a+a=111a=37.3.a⋮37\)

Do có chứa 1 thừa số là 37;

3, \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9a-9b=9\left(a-b\right)⋮9\)

Bình luận (0)
AH
16 tháng 7 2017 lúc 21:48

Giải:

1. Gọi hai số cùng chia hết cho $7$ là $a,b$ . Khi đó ta viết được hai số đó dưới dạng \(7m\)\(7n\) (\(m,n\in\mathbb{Z}\))

\(\Rightarrow a-b=7m-7n=7(m-n)\vdots 7\)

Ta có đpcm

2.Có \(\overline{aaa}=a.111=a.37.3\vdots 37\) (đpcm)

3. Có:

\(\overline{ab}-\overline{ba}=10.a+b-(10.b+a)=9a-9b=9(a-b)\vdots 9\) (đpcm)

Bình luận (1)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
NH
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết