1. Cho biểu thức:
A = \(x-2+\dfrac{6x^2-3x}{x^3+2x^2}+\left(\dfrac{x+1}{x^2-1}+\dfrac{2}{x+1}-\dfrac{3}{x}\right):\dfrac{x+2}{x^2-1}\)
a) Rút gọn A.
b) Tìm x sao cho A nhận giá trị âm.
2. Giải phương trinh: \(\dfrac{a+b-x}{c}+\dfrac{b+c-x}{a}+\dfrac{a+c-x}{b}=1-\dfrac{4x}{a+b+c}\) với \(a,b,c\ne0\); \(a+b+c\ne0\); \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ne\dfrac{4}{a+b+c}\) và x là ẩn số.
3. Giải bất phương trình: \(3x^3+4x^2+5x-6>0\).
4. Tìm x sao cho: 2 < x < 3 và \(2\left|x\right|-3\left|x-2\right|+4\left|x-3\right|=5\)
Bài 1:Giải các pt chứa ẩn ở mẫu sau:
a) \(\dfrac{2x+1}{x-1}=\dfrac{5\left(x-1\right)}{x+1}\) b) \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\) c)\(\dfrac{x-2}{2+x}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\)
d)\(\dfrac{x+1}{x-2}-\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{x^2-4}\) e)\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\) g)\(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{5x-2}{4-x^2}\)
h)\(\dfrac{1}{x+1}-\dfrac{5}{x-2}=\dfrac{15}{\left(x+1\right)\left(2-x\right)}\) j)\(\dfrac{3}{4\left(x-5\right)}+\dfrac{15}{50-2x^2}=\dfrac{7}{6\left(x+5\right)}\) k)\(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
n)\(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\)
a \(x^2-x=0\) b \(x^2-2x=0\) c (x+1)(x+2)=(2-x)(x+2)
d \(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\) đ \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
e \(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)
f \(5+\dfrac{76}{x^2-16}=\dfrac{2x-1}{x+4}-\dfrac{3x-1}{4-x}\)
g \(\dfrac{90}{x}-\dfrac{36}{x-6}=2\) h \(\dfrac{1}{x}+\dfrac{1}{x+10}=\dfrac{1}{12}\) i \(\dfrac{x+3}{x-3}-\dfrac{1}{x}=\dfrac{3}{x\left(x-3\right)}\)
k \(\dfrac{3}{x+2}-\dfrac{2}{x-2}+\dfrac{8}{x^2-4}=0\) l \(\dfrac{3}{x+2}-\dfrac{2}{x-3}=\dfrac{8}{\left(x-3\right)\left(x+2\right)}\)
m\(\dfrac{x}{2x+6}-\dfrac{x}{2x+2}=\dfrac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
n \(\dfrac{x}{x+1}-\dfrac{2x-3}{1-x}=\dfrac{3x^2+5}{x^2-1}\) j \(\dfrac{5}{x+7}+\dfrac{8}{2x+14}=\dfrac{3}{2}\)
q \(\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)
Cần gấp ạ
rút gọn các biểu thức sau
\(B=\dfrac{3\text{x}^2+6\text{x}+12}{x^3-8\dfrac{ }{ }}\)
C=\(\left(\dfrac{x+1}{2\text{x}-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2\text{x}+2}\right).\dfrac{4\text{x}^2-4}{5}\)
E=\(\dfrac{x^2-10\text{x}+25}{x^2-5\text{x}}\)
Giải các phương trình sau :
a)\(\dfrac{5x+2}{6}\)\(-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
b)\(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
c)\(2x^3 +6x^2=x^2+3x\)
d)\(\left|x-4\right|+3x=5\)
Bài 1: GPT
a) \(\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}=\dfrac{4x^2}{x^2-4}\)
b) \(\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)
c)\(\dfrac{x+3}{x-3}-\dfrac{48}{x^2-9}=\dfrac{x-3}{x+3}\)
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\left(x,y,z\ne0\right)\). Tính \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)
a)\(\dfrac{x-5}{x}-\dfrac{x}{x-5}+\dfrac{50}{x^2-5\text{x}}\)
b)\(\dfrac{x+1}{x+3}-\dfrac{x-1}{3-x}+\dfrac{2\text{x}-2\text{x}^2}{x^2-9}\)
Rút gọn:
\(A=\dfrac{x}{5-x}+\left(\dfrac{x}{x^2-25}+\dfrac{5-x}{5x+x^2}\right):\dfrac{2x-5}{x^2+5x}\)
\(B=\left[\left(\dfrac{1}{x^2}+1\right)\cdot\dfrac{1}{1+2x+x^2}+\left(1+\dfrac{1}{x}\right)\cdot\dfrac{2}{\left(1+x\right)^3}\right]:\dfrac{x-1}{x^3}\)