Bất phương trình bậc nhất một ẩn

H24

CM: a4+b4≥a3b+ab(∀a,b)

TG
10 tháng 4 2021 lúc 21:03

\(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)

Có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2>0\end{matrix}\right.\)

\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\)

\(\Rightarrow a^4+b^4\ge a^3b+ab^3\)

Bình luận (0)
H24
10 tháng 4 2021 lúc 22:40

Áp dụng BĐT cosi với 2 số không âm:

`a^4+b^4+b^4+b^4>=4\root4{a^4b^12}=4|ab^3|>=4ab^3`

Hoàn toàn tương tự:

`b^4+a^4+a^4+a^4>=4a^3b`

`=>a^4+b^4+b^4+b^4+b^4+a^4+a^4+a^4>=4ab^3+4a^3b`

`<=>4(a^4+b^4)>=4(ab^3+a^3b)`

`<=>a^4+b^4>=ab^3+a^3b`

Bình luận (0)

Các câu hỏi tương tự
SL
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
AP
Xem chi tiết
BK
Xem chi tiết
NY
Xem chi tiết
SN
Xem chi tiết
LT
Xem chi tiết
HA
Xem chi tiết