\(10\equiv1\left(\text{mod 9}\right)\Rightarrow10^{28}\equiv1^{28}\equiv1\left(\text{mod 9}\right)\Rightarrow10^{28}+8\equiv1+8\equiv9\equiv0\left(\text{mod 9}\right)\)
Đat: A=50+51+.....+52019.Vì: A có 2020 so hạng nên ta chia A thành 336 nhóm moi nhóm có 6 so hạng và thừa 4 so hạng như sau:
A=(50+51+52+53)+[(54+57)+(55+58)+(56+59)]+......+[(52014+52017)+(52015+52018)+(52016+52019)]=156+(54.126+55.126+56.126)+.....+(52014.126+52015.126+52016.126)=156+126(54+55+56)+....+126(52014+52015+52016)=156+126(54+55+56+..........+52015+52016) khong chia hết cho 126.
b, Dê thấy: 50=1 chia 5 dư 1 còn: 51;52;....;52019 đêù chia 5 dư 0
=> 50+51+52+.....+52019 chia 5 dư 1 => 50+51+....+52019 khong chia hết cho 5 => 50+51+......+52019 khong chia hết cho 30