Violympic toán 6

H24

Chứng tỏ :

1<\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)<2

LD
2 tháng 4 2019 lúc 13:06

Ta có

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng vế với vế của 3BDT trên

\(\Rightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) (*)

Ta có

\(\frac{a}{a+b}< 1\Leftrightarrow\frac{a}{a+b}< \frac{c}{c}\Leftrightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

Tương tự

\(\frac{b}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{c}{a+c}< \frac{b+c}{a+b+c}\)

Cộng vế với vế của 3 BĐT trên, có

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< \frac{2\left(a+b+c\right)}{a+b+c}=2\) (**)

Từ (*) và (**) => ĐPCM

Bình luận (0)
NL
2 tháng 4 2019 lúc 13:08

Chỉ đúng với điều kiện a, b, c dương

\(\frac{a}{a+b}>\frac{a}{a+b+c}\); \(\frac{b}{b+c}>\frac{b}{a+b+c}\); \(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng vế với vế:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\)

Lại có:

\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\); \(\frac{b}{b+c}< \frac{a+b}{a+b+c}\); \(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng vế với vế:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+a+b+c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Bình luận (0)
KT
2 tháng 4 2019 lúc 17:52

vmin95lines Ẹ hèm

Bình luận (0)

Các câu hỏi tương tự
OO
Xem chi tiết
LV
Xem chi tiết
LT
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết
SP
Xem chi tiết
NA
Xem chi tiết
TP
Xem chi tiết
HN
Xem chi tiết