Ôn tập toán 8

DN

Chứng minh vs \(\forall n\) nguyên dương thì \(S_n=1^3+2^3+3^3+...+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

LF
12 tháng 10 2016 lúc 11:05

Ta có: \(\sqrt{a^3+b^3+c^3}=\sqrt{\left(a+b+c\right)^2}=a+b+c\)(với a,b,c dương)

=>với mọi n dương ta cũng viết biểu thức đc dưới dạng:

\(S_n=\left(1+2+3+...+n\right)^2\)

Đặt \(A=1+2+3+....+n\)

Tổng A có số số hạng theo n là:

\(\left(n-1\right):1+1=n\)(số)

Tổng A theo n là:

\(\frac{n\left(n+1\right)}{2}\).Thay A vào ta có:

\(\Rightarrow S_n=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

 

Bình luận (3)
LF
12 tháng 10 2016 lúc 11:28

Ta có công thức sau:

\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow\left(1+2+3+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (*)

\(\Leftrightarrow1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\) (1)

Cần chứng minh (1) đúng với mọi n dương

Với \(n=1;n=2\) thì đẳng thức đúng

Giả sử đẳng thức đúng với \(n=k\)

Nghĩa là: \(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)

Ta sẽ chứng minh nó đúng với \(n=k+1\)

Viết lại đẳng thức cần chứng minh \(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\)(**)

Ta cũng có công thức tương tự (*)

\(\Leftrightarrow\frac{\left(k+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)

\(\Leftrightarrow\left(k^2+3k+2\right)^2-\left(k^2+k\right)^2=4\left(k+1\right)^3\)

\(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)

Vậy theo nguyên lý quy nạp ta có đpcm.

Bình luận (1)
DL
12 tháng 10 2016 lúc 9:04

cám ơn cô cho em công thức này, bây giờ thi toán trắc nghiệm rùi, cm làm j cho hại não phải k cô? em hài cho vui thui

Bình luận (1)
LF
12 tháng 10 2016 lúc 11:21

Cách khác có thể cm vs quy nạp như sau

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
DN
Xem chi tiết
PA
Xem chi tiết
HG
Xem chi tiết
HK
Xem chi tiết
DN
Xem chi tiết
VT
Xem chi tiết
HK
Xem chi tiết
GL
Xem chi tiết