Ôn tập toán 7

CT

Chứng minh rằng:

C = 1/3 + 2/32 + 3/33 + 4/34 + . . . . . . . + 100/3100 < 3/4

SG
5 tháng 11 2016 lúc 20:28

\(C=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)

\(3C=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)

\(3C-C=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)

\(2C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6C=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6C-2C=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4C=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4C=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4C=3-\frac{203}{3^{100}}< 3\)

\(\Rightarrow C< \frac{3}{4}\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
CG
Xem chi tiết
TM
Xem chi tiết
NT
Xem chi tiết
BL
Xem chi tiết