\(x^6+3x^2y^2+y^6=\left(x^6+y^6\right)+3x^2y^2=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)+3x^2y^2\)
\(=x^4-x^2y^2+y^4+3x^2y^2=x^4+2x^2y^2+y^4=\left(x^2+y^2\right)^2=1^2=1\)
\(x^6+3x^2y^2+y^6=\left(x^6+y^6\right)+3x^2y^2=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)+3x^2y^2\)
\(=x^4-x^2y^2+y^4+3x^2y^2=x^4+2x^2y^2+y^4=\left(x^2+y^2\right)^2=1^2=1\)
chứng minh nếu x2−yzx(1−yz)=y2−zxy(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
chứng minh nếu x2−yzx/(1−yz)=y2−zxy/(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
chứng minh rằng x^4-x+1 luôn dương với mọi x
Chứng minh: a5-a chia hết cho 30 với a\(\in Z\)
Chứng minh rằng: x5-x+2 không là số chính phương với mọi x\(\in Z\)
Chứng minh rằng nếu a,b, c là các số hữu tỉ và ab+bc+ac=1 thì (1+a2)(1+b2)(1+c2) bằng bình phương của số hữu tỉ
chứng minh rằng 2008^n+1-2008^nchia hết cho 2007 (với n là số tự nhiên)
1 . a) Chứng minh rằng số n2 +2014 với n nguyên dương không là số chính phương.
b) Cho a, b là các số dương thỏa mãn a3 + b3 = a5 + b5.
Chứng minh rằng: a2 + b2 ≤ 1 + ab
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
Cho a/b+c + b/c+a + c/a+b = 1. Chứng minh rằng: a/b+c + b/c+a + c/a+b=1. Chứng minh rằng a^2/b+c + b^2/c+a + c^2/a+b
giúp mình với
a,xy(x+y)-yz(y+z)-zx(z-x)
Bài 2
a,x16-1
b,x36-64
c,x6+y6
Bài 3:Tìm 4 số nguyên dương liên tiếp,biết rằng tích của chúng bằng 120