Chương 1: MỆNH ĐỀ, TẬP HỢP

TL

Chứng minh rằng x2--3-3x+7>0 với mọi số thực x

Tìm giá trị nhỏ nhất của A=4x2+4x+15

Giúp mình với

H24
3 tháng 4 2020 lúc 18:22

Viết lại đề câu a)

Câu b)

\(A=4x^2+4x+15\)

\(=\left(2x+1\right)^2+14\ge14\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{1}{2}\)

Vậy : Min \(A=14\Leftrightarrow x=-\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
3 tháng 4 2020 lúc 18:22

\(x^2-3x+7=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}>0\)

Ta có \(A=4x^2+4x+15=\left(2x+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(x=\frac{-1}{2}\)

Vậy Min \(A=14\Leftrightarrow x=\frac{-1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
3 tháng 4 2020 lúc 18:25

a, Ta có : \(x^2-3x+7\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{19}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\)

Ta thấy \(\left(x-\frac{3}{2}\right)^2\ge0\)

=> \(\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)

\(\frac{19}{4}>0\)

=> \(\left(x-\frac{3}{2}\right)^2+\frac{19}{4}>0\) với mọi x .

=> \(x^2-3x+7>0\forall x\)

b, Ta có : \(A=4x^2+4x+15\)

=> \(A=\left(2x+1\right)^2+14\)

Ta thấy : \(\left(2x+1\right)^2\ge0\)

=> \(\left(2x+1\right)^2+14\ge14\)

Vậy MinA = 14 khi 2x + 1 = 0 <=> \(x=-\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
VC
Xem chi tiết
AN
Xem chi tiết
H24
Xem chi tiết
CT
Xem chi tiết
SD
Xem chi tiết
TA
Xem chi tiết
NM
Xem chi tiết
AN
Xem chi tiết
AN
Xem chi tiết