cho hình bình hành ABCD với O là giao điểm cua hai đường chéo Ac và BD. chứng mình rằng vtAB-vtCO=vtAC-vtOB
cho tam giác abc. điểm E thỏa mãn 20.vtAB + 11.vtAC + 2016.vtAE = vt0. Gọi K là giao điểm của AE và BC. tính tỉ số BK/KC
1) Rút gọn biểu thức : vecto AB-vt CB+ vt CD-vt ED
2) trong mặt phảng OXY, cho tam giác G của tam giác ABC
a) Tìm vtAB và trọng tâm G của tam giác ABC
b) Tìm tọa độ D sao cho vtCD=2vtAB
c) Tính vtCA* vtBC
d) Tính chu vi và diện tích tam giác ABC
e) tính góc B của tam giác ABC
f) Tìm tọa độ điểm E thuộc õ sao cho
cho tam giác ABC . Gọi M là trung điểm AB , N là trung điểm AC sao cho NA = 2NC . Gọi K là trung điểm MN : a) chứng minh rằng : vector BC = \(\frac{3}{2}\) nhân vector AN - 2 nhân vector AM ; b) chứng minh rằng : vector AK = \(\frac{1}{4}\) nhân vector AB + \(\frac{1}{3}\) nhân vector AC
Cho tam giác ABC.Trên tia AB,AC lấy E,F sao cho AB=(2k+1)AE và AC=(k-2)AF. Chứng minh rằng đường thẳng EF luôn đi qua 1 điểm cố định khi k thay đổi
Cho tam giác vuông ABC (∠A = 900) có cạnh BC = 2AB, tia phân giác của ∠ABC cắt AC tại D, gọi E là trung điểm của cạnh BC.
1) Chứng minh DE vuông góc với BC.
2) Chứng minh rằng BD = DC.
3) Tính ∠B, ∠C của tam giác ABC.
cho hình thoi ABCD cạnh bằng a , tâm O , góc BAD = 60 : a) chứng minh rằng : vector AB + 2 vector AO + vector AD = 2 vector AC . Tính giá trị tuyệt đối của ( vector AB + 2 vector AO + vector AD ) theo a ; b) gọi G là trọng tâm tam giác ACD . Chứng minh rằng : vector BA + vector BC + vector BD = 2 vector BG
cho 2 hình bình hành ABCD va ABHK chứng minh rằng vecto CH=vecto Dk
BÀI 1: Cho tứ giác ABCD . M,N lần lượt là trung điểm AD,BC.
a) chứng minh \(\overrightarrow{MN}\) = \(\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{DC}\right)\)
b) Gọi I nằm trên đoạn MN sao cho IM = 2IN. Chứng minh rằng \(\overrightarrow{IA}+2\overrightarrow{IB}+2\overrightarrow{IC}+\overrightarrow{ID}=O\)
BÀI 2 : Cho hình bình hành ABCD.Gọi O là điểm bất kì trên cạnh AC.Từ O kẻ các đường thẳng // với các cạnh.Các đường này lần lượt cắt AB,BC,CD,DA tại M,F,N,E.Chứng minh : \(\overrightarrow{BD}=\overrightarrow{ME}+\overrightarrow{FN}\)