Violympic toán 7

LM

chứng minh rằng vs moija,b,c,d, tích (a-b)(a-c)(b-c)(b-d)(c-d) chia hết cho 12.

làm nhanh lên nhé mk cần gấp trong tối nay.

VT
2 tháng 9 2019 lúc 20:32

Trong 4 số \(a,b,c,d\) có ít nhất 2 số cùng số dư khi chia cho 3.

Trong 4 số \(a,b,c,d\) nếu có 2 số cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ \(⋮4.\)

Nếu không thì 4 số dư theo thứ tự \(0,1,2,3.\)

\(\Leftrightarrow\) Trong 4 số \(a,b,c,d\) có 2 số chẵn, 2 số lẻ.

Hiệu của 2 số chẵn và 2 số lẻ trong 4 số đó \(⋮2.\)

\(\Rightarrow\) Tích trên chia hết cho 3 và 4.

\(ƯCLN\left(3;4\right)=1.\)

\(\Rightarrow\left(a-b\right).\left(a-c\right).\left(b-c\right).\left(b-d\right).\left(c-d\right)⋮\left(3.4\right)=12.\)

Vậy \(\left(a-b\right).\left(a-c\right).\left(b-c\right).\left(b-d\right).\left(c-d\right)⋮12.\)

Chúc bạn học tốt!

Bình luận (13)
H24
2 tháng 9 2019 lúc 19:34

Đặt S=(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)

Trong 4 số nguyên a,b,c,d chắc chắn có 2 số chia hết cho 3 có cùng số dư =>hiệu của chúng chia hết cho 3

Nên S chia hết cho 3 (1)

Ta lại có trong 4 số nguyên a,b,c,d hoac có 2 số chẵn,2 số lẻ,chẳng hạn a,b là số chẵn và c,d là số lẻ,thế thì a-b và c-d chia hết cho 2 nên (a-b)(c-d) chia hết cho 4=> s chia hết cho 4

Hoặc nếu ko phải như trên thì trong 4 số trên tồn tại 2 số chia 4 có cùng số dư nên hiệu của chúng chia hết cho 4=>S chia hết cho 4 (2)

Từ (1) và (2) ta có S chia hết cho 3 và S chia hết cho 4 mà (3;4)=1 nên S chia hết cho 12(đpcm)

Bình luận (2)

Các câu hỏi tương tự
DC
Xem chi tiết
SN
Xem chi tiết
NL
Xem chi tiết
MM
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
BA
Xem chi tiết
KH
Xem chi tiết
TL
Xem chi tiết