Violympic toán 7

SN

Cho a/ b=c/d hẫu chứng minh:

A,b/a-b=d/c-d

Tìm x,y biết x/y=1,5 và c nhân y bằng 24

Giúp mk vs mk đang cần gấp

H24
7 tháng 11 2019 lúc 11:38

1,

\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\\ \Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\\ \Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\\ \Rightarrow\frac{b}{a-b}=\frac{d}{c-d}\)

2,

Có: \(\frac{x}{y}=1,5=\frac{3}{2}\Rightarrow\frac{x}{3}=\frac{y}{2}\)

Đặt \(\frac{x}{3}=\frac{y}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=2k\end{matrix}\right.\)

\(x\cdot y=24\)

\(\Rightarrow3k\cdot2k=24\\ \Rightarrow6k^2=24\\ \Rightarrow k^2=4\\ \Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)

+ Với k = 2

\(\Rightarrow\left\{{}\begin{matrix}x=3\cdot2=6\\y=2\cdot2=4\end{matrix}\right.\)

+ Với k = -2

\(\Rightarrow\left\{{}\begin{matrix}x=3\cdot\left(-2\right)=-6\\y=2\cdot\left(-2\right)=-4\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(6;4\right);\left(-6;-4\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
VT
7 tháng 11 2019 lúc 12:20

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)

\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}.\)

\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)

\(\Rightarrow\frac{b}{a-b}=\frac{d}{c-d}\left(đpcm\right).\)

b) Ta có: \(\frac{x}{y}=1,5.\)

Đổi \(1,5=\frac{3}{2}\)

\(\Rightarrow\frac{x}{y}=\frac{3}{2}.\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2}\)\(x.y=24.\)

Đặt \(\frac{x}{3}=\frac{y}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=2k\end{matrix}\right.\)

Có: \(x.y=24\)

=> \(3k.2k=24\)

=> \(6.k^2=24\)

=> \(k^2=24:6\)

=> \(k^2=4\)

=> \(k=\pm2.\)

TH1: \(k=2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=2.2=4\end{matrix}\right.\)

TH2: \(k=-2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=2.\left(-2\right)=-4\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(6;4\right),\left(-6;-4\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NA
Xem chi tiết
KH
Xem chi tiết
LM
Xem chi tiết
CV
Xem chi tiết
DX
Xem chi tiết
KH
Xem chi tiết
VL
Xem chi tiết
PA
Xem chi tiết
YY
Xem chi tiết