Chương 1: MỆNH ĐỀ, TẬP HỢP

5H

Chứng minh rằng với n ε  N*    ta luôn có:

a) n3 + 3n2 + 5n chia hết cho 3;

b) 4n + 15n - 1 chia hết cho 9;

c) n3 + 11n chia hết cho 6.



 

DM
5 tháng 6 2016 lúc 9:05

a) Đặt Sn = n3 + 3n2 + 5n

Với n = 1 thì S1 = 9 chia hết cho 3

Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k)  3

Ta phải chứng minh rằng Sk+1  3

Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1) 

                        = k3  + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5 

                         = k3 + 3k2 + 5k + 3k2 + 9k + 9

 hay Sk+1 = Sk + 3(k2 + 3k + 3)

Theo giả thiết quy nạp thì Sk   3, mặt khác 3(k2 + 3k + 3)  3 nên Sk+1  3.

Vậy (n3 + 3n2 + 5n)  3 với mọi n ε N*  .


 

Bình luận (0)
DM
5 tháng 6 2016 lúc 9:08

b) Đặt Sn = 4n + 15n - 1 

Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1   9

Giả sử với n = k ≥ 1 thì Sk= 4k + 15k - 1 chia hết cho 9.

Ta phải chứng minh Sk+1  9.

Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1

                                    = 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)    

Theo giả thiết quy nạp thì  Sk   9  nên 4S1   9, mặt khác 9(5k - 2)   9, nên Sk+1  9

Vậy (4n + 15n - 1)  9 với mọi n ε N*  



 

Bình luận (0)
VT
5 tháng 6 2016 lúc 9:08

a) Đặt Sn = n3 + 3n2 + 5n

Với n = 1 thì S1 = 9 chia hết cho 3

Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k)  3

Ta phải chứng minh rằng Sk+1  3

Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1) 

                        = k3  + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5 

                         = k3 + 3k2 + 5k + 3k2 + 9k + 9

 hay Sk+1 = Sk + 3(k2 + 3k + 3)

Theo giả thiết quy nạp thì Sk   3, mặt khác 3(k2 + 3k + 3)  3 nên Sk+1  3.

Vậy (n3 + 3n2 + 5n)  3 với mọi n ε N*  .

b) Đặt Sn = 4n + 15n - 1 

Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1   9

Giả sử với n = k ≥ 1 thì Sk= 4k + 15k - 1 chia hết cho 9.

Ta phải chứng minh Sk+1  9.

Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1

                                    = 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)    

Theo giả thiết quy nạp thì  Sk   9  nên 4S1   9, mặt khác 9(5k - 2)   9, nên Sk+1  9

Vậy (4n + 15n - 1)  9 với mọi n ε N*  

c) Đặt Sn = n3 + 11n

Với n = 1, ta có S1 = 13 + 11n = 12 nên S1  6

Giả sử với n = k ≥ 1 ,ta có S= k3 + 11k  6

Ta phải chứng minh Sk+1  6

Thật vậy, ta có Sk+1 = (k + 1)3 + 11(k + 1) =  k3 + 3k + 3k + 1 + 11k + 11           

                                  = ( k3 + 11k) + 3(k2 + k + 4) = Sk + 3(k2 + k + 4) 

THeo giả thiết quy nạp thì  Sk  6, mặt khác k2 + k + 4 = k(k + 1) + 1 là số chẵn nên 3(k2 + k + 4)  6, do đó Sk+1  6

Vậy n3 + 11n chia hết cho 6 với mọi n ε N* .

 

Bình luận (0)
DM
5 tháng 6 2016 lúc 9:09

c) Đặt Sn = n3 + 11n

Với n = 1, ta có S1 = 13 + 11n = 12 nên S1  6

Giả sử với n = k ≥ 1 ,ta có S= k3 + 11k  6

Ta phải chứng minh Sk+1  6

Thật vậy, ta có Sk+1 = (k + 1)3 + 11(k + 1) =  k3 + 3k + 3k + 1 + 11k + 11           

                                  = ( k3 + 11k) + 3(k2 + k + 4) = Sk + 3(k2 + k + 4) 

THeo giả thiết quy nạp thì  Sk  6, mặt khác k2 + k + 4 = k(k + 1) + 1 là số chẵn nên 3(k2 + k + 4)  6, do đó Sk+1  6

Vậy n3 + 11n chia hết cho 6 với mọi n ε N* .

 



 

Bình luận (0)
TD
5 tháng 6 2016 lúc 11:24

a)Ta có:

\(n^3+3n^2+5n=n^3+n^2+2n^2+2n+3n\)

\(=\left(n^3+n\right)+\left(2n^2+2n\right)+3n\)

\(=n^2\left(n+1\right)+2n\left(n+1\right)+3n\)

\(=n.\left(n+1\right)\left(n+2\right)+3n\)

Có: \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 3.

Mà 3n cũng chia hết cho 3.

Do đó \(n^3+3n^2+5n\) chia hết cho 3 với mọi \(n\in N\)*

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
GK
Xem chi tiết
LM
Xem chi tiết
AD
Xem chi tiết
HT
Xem chi tiết
NN
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết