Ôn tập toán 6

KK

Chứng minh rằng với mọi số tự nhiên n thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương

YA
21 tháng 11 2016 lúc 18:38

Đặt \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)

\(=\left(n^2+3n\right)\left(n^2+2n+n+2\right)+1\)

Đặt \(n^2+3=t\)

=> \(A=t\left(t+2\right)+1\)

\(=t^2+2t+1\)

\(=\left(t+1\right)^2\)

=> A là số chính phương

Vậy với mọi số tự nhiên n thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương ( đpcm )
 

 

Bình luận (0)

Các câu hỏi tương tự
KK
Xem chi tiết
GL
Xem chi tiết
KK
Xem chi tiết
KK
Xem chi tiết
NT
Xem chi tiết
DW
Xem chi tiết
NP
Xem chi tiết
PC
Xem chi tiết
HT
Xem chi tiết