Ôn tập toán 8

H24

chứng minh rằng với mọi số tự nhiên n ta đều có:

A=n4-14n3+71n2-154n+120 chia hết cho 24
 

LN
22 tháng 1 2019 lúc 20:37

B= (n^4 - 14n^3 + 49n^2) + 22n^2 -154n +120
= n^2(n^2 -14n +49) + 22n(n-7) +120
= (n(n-7))^2 +10n(n-7) + 12n(n-7) + 10*12
= n(n-7)[n(n-7) + 10] + 12[n(n-7) +10]
= [n(n-7) +10] * [n(n-7) + 12]
= (n^2 - 7n + 10)(n^2 - 7n +12)
= (n-2)(n-5)(n-3)(n-4)
= (n-5)(n-4)(n-3)(n-2)
B là tích của 4 số tự nhiên liên tiếp

=> B chia hết cho 2, 3, 4 mà 2, 3, 4 nguyên tố cùng nhau

Suy ra: B chia hết 2x3x4

Hay B chia hết cho 24.

Bn chịu khó đọc nha!

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
PT
Xem chi tiết