Đại số lớp 6

H24

Chứng minh rằng với mọi số nguyên n sao cho phân số \(\dfrac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản

NH
4 tháng 4 2017 lúc 21:04

Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right)\) \(\left(d\in N\right)\)

\(\Rightarrow\left\{{}\begin{matrix}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\)

\(\Rightarrow\) \(n^2+1⋮d\)

\(n^3+2n⋮d\)

\(\Rightarrow\left\{{}\begin{matrix}n^3+n⋮d\\n^3+2n⋮d\end{matrix}\right.\)

\(\Rightarrow n⋮d\)

\(n^2+1⋮d\)

\(\Rightarrow\left\{{}\begin{matrix}n^2⋮d\\n^2+1⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\)

\(d\in N;1⋮d\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n^3+2n;n^4+3n^2+1\right)\)

Vậy phân số \(\dfrac{n^3+2n}{n^4+3n^2+1}\) tối giản với mọi \(n\in N\)

\(\Rightarrowđpcm\)

~ Chúc bn học tốt ~

Bình luận (0)

Các câu hỏi tương tự
LM
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
TH
Xem chi tiết
HD
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
DA
Xem chi tiết
NH
Xem chi tiết