Đại số lớp 6

NH

Bài 4: Với những giá trị nguyên nào của n thì phân số sau tối giản:

a. \(\dfrac{n+4}{n+3}\) b. \(\dfrac{n-1}{n-2}\) c. \(\dfrac{2n+3}{4n+7}\) d. \(\dfrac{n^3+2n}{n^4+3n^2+1}\)

QD
31 tháng 7 2017 lúc 11:43

a) \(\dfrac{n+4}{n+3}=\dfrac{n+3+1}{n+3}=\dfrac{n+3}{n+3}+\dfrac{1}{n+3}=1+\dfrac{1}{n+3}\)

=> n+3 \(\in\) Ư(1) = {-1,1}

Ta có : n+3 = -1

n = (-1)-3

n = -4

n+3 = 1

n = 1-3

= -2

Vậy n = -4 hoặc -2

b) \(\dfrac{n-1}{n-2}=\dfrac{n-2+1}{n-2}=\dfrac{n-2}{n-2}+\dfrac{1}{n-2}=1+\dfrac{1}{n-2}\)

=> n-2 \(\in\) Ư(1) = {-1,1}

Ta có : +) n-2= -1

n=(-1)+2

n=1

+) n-2 = 1

n=1+2

n=3

Vậy n=1 hoặc 3

c) \(\dfrac{2n+3}{4n+7}\)

Gọi ƯCLN(2n+3,4n+7) = d

Ta có : 2n+3\(⋮\)d => 2(2n+3) = 4n+6 \(⋮\) d

4n+7 \(⋮\) d

=> (4n+6)-(4n+7) \(⋮\) d

=> -1 \(⋮\) d

=> d = Ư(-1) = {-1,1}

Để phân số tối giản

=> ƯC(4n+6,4n+7)=1

=> d = -1 hoặc 1

d) \(\dfrac{n^3+2n}{n^4+3n^2+1}\)

Gọi d là ƯCLN của n3+2n và n4+3n2+1

=> n3 + 2n chia hết cho d và n4 + 3n2 + 1 \(⋮\) d

=> n(n3 + 2n) = n4 + 2n2 \(⋮\) d

=> (n4 + 3n2 + 1) -(n4 + 2n2) = n2 + 1 \(⋮\) d

=> (n2 + 1)2 = n4 + 2n2 + 1 \(⋮\) d

=> (n4 + 3n2 + 1) - ( n4 + 2n2 + 1 ) = n2 \(⋮\) d

=> n2 + 1 - n2 = 1 \(⋮\) d

=> d = 1 hoặc d = - 1 Vậy phân số ban đầu là tối giản
Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
LM
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
QT
Xem chi tiết