Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 8

NH

Chứng minh rằng với mọi n\(\ge2\)ta có

\(\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{n^3}< \frac{1}{4}\)

AH
28 tháng 4 2019 lúc 23:20

Lời giải:

Xét số hạng tổng quát \(\frac{1}{n^3}\)

\((n-1)(n+1)=n^2-1< n^2\)

\(\Rightarrow (n-1)n(n+1)< n^3\)

\(\Rightarrow \frac{1}{(n-1)n(n+1)}>\frac{1}{n^3}\)

Thay $n=2,3,4,.....$. Khi đó ta có:

\(\frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}<\underbrace{ \frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{(n-1)n(n+1)}}_{A}(*)\)

Mà:

\(2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{(n+1)-(n-1)}{(n-1)n(n+1)}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{(n-1)n}-\frac{1}{n(n+1)}\)

\(=\frac{1}{2}-\frac{1}{n(n+1)}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{4}(**)\)

Từ \((*) ;(**)\Rightarrow \frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}< \frac{1}{4}\)

Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
LT
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
SC
Xem chi tiết
JJ
Xem chi tiết
LL
Xem chi tiết
LH
Xem chi tiết
TA
Xem chi tiết