Ôn tập toán 6

NH

Chưng minh rằng với mọi n thuộc Z thì (3n-5)/(3-2n) là phân số tối giản

HELP ME, PLEASE

LH
7 tháng 3 2017 lúc 22:07

Ta có: \(\dfrac{3n-5}{3-2n}\)

Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)

\(\Rightarrow\left\{{}\begin{matrix}3n-5⋮d\\3-2n⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}6n-10⋮d\\9-6n⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\)

\(\Rightarrow d\in\left\{\pm1\right\}\)

Vậy với mọi \(n\in N\) thì \(\dfrac{3n-5}{3-2n}\) là phân số tối giản

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
NU
Xem chi tiết
TQ
Xem chi tiết
LT
Xem chi tiết
KK
Xem chi tiết