Ôn tập toán 6

LT

Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{9n+5}{2n+1}\) luôn tối giản

PD
9 tháng 5 2016 lúc 6:33

Gọi d là ƯCLN(9n+5;2n+1)

Ta có 9n+5\(⋮\)d;2n+1\(⋮\)d

     =>2*(9n+5)\(⋮\)d;9*(2n+1)\(⋮\)d

     =>18n+10\(⋮\)d;18n+9\(⋮\)d

=>[(18n+10)-(18n+9)]\(⋮\)d

=>[18n+10-18n-9]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(9n+5;2n+1)=1 Nên phân số \(\frac{9n+5}{2n+1}\) luôn là phân số tối giản(nEN*)

Đề phải là nEN* hoặc n>1

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
AJ
Xem chi tiết
NT
Xem chi tiết
LP
Xem chi tiết
TT
Xem chi tiết