Đại số lớp 6

CV

Chứng minh rằng với mọi a , b , c và d là các số nguyên thì T = (a-b)(a-c)(a-d)(b-c)(b-d0(c-d) chia hết cho 12

LB
9 tháng 7 2017 lúc 13:37

Trong 4 số nguyên a, b, c, d chắc chắn có 2 số chia hết cho 3 có cùng số dư.\(\Rightarrow\)Hiệu của chúng chai hết cho 3.

Nên T chia hết cho 3 (1)

Ta lại có 4 số nguyên a, b, c hoặc có 2 số chẵn, hai số lẻ, chẳng hạn a, b là hai số chẵn còn c, d là hai số lẻ.

Thì a - b và c - d chia hết cho 2 nên (a - b)(c - d) chia hết cho 4.

\(\Rightarrow\) T chia hết cho 4.

Hoặc nếu không phải như trên thì trong 4 số tồng tại 2 số chia hết cho 4 có cùng số dư nên hiệu của chúng chia hết cho 4.

\(\Rightarrow\) T chia hết cho 4

Từ (1) và hai ta có T chia hết cho 3 và T chia hết cho 4 mà (3;4) = 1 nên T chia hết cho 12 (đpcm)

Chúc bạn học tốt!!

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
MM
Xem chi tiết
NL
Xem chi tiết
NN
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
NN
Xem chi tiết
HL
Xem chi tiết
NB
Xem chi tiết