$6. Tích vô hướng của hai vectơ

QL

Chứng minh rằng với hai vecto bất kì \(\overrightarrow a ,\overrightarrow b \), ta có:

\(\begin{array}{l}{(\overrightarrow a  + \overrightarrow b )^2} = {\overrightarrow a ^2} + 2\overrightarrow a .\overrightarrow b  + {\overrightarrow b ^2}\\{(\overrightarrow a  - \overrightarrow b )^2} = {\overrightarrow a ^2} - 2\overrightarrow a .\overrightarrow b  + {\overrightarrow b ^2}\\(\overrightarrow a  - \overrightarrow b )(\overrightarrow a  + \overrightarrow b ) = {\overrightarrow a ^2} - {\overrightarrow b ^2}\end{array}\)

HM
24 tháng 9 2023 lúc 1:06

\(\begin{array}{l}{ + \, (\overrightarrow a  + \overrightarrow b )^2} = (\overrightarrow a  + \overrightarrow b )(\overrightarrow a  + \overrightarrow b )\\ = \overrightarrow a .(\overrightarrow a  + \overrightarrow b ) + \overrightarrow b .(\overrightarrow a  + \overrightarrow b ) \\= {\overrightarrow a ^2} + \overrightarrow a .\overrightarrow b  + \overrightarrow b .\overrightarrow a  + {\overrightarrow b ^2} \\= {\overrightarrow a ^2} + 2\overrightarrow a .\overrightarrow b  + {\overrightarrow b ^2}.\\  + \, {(\overrightarrow a  - \overrightarrow b )^2} =(\overrightarrow a  - \overrightarrow b )(\overrightarrow a  - \overrightarrow b )\\ = \overrightarrow a .(\overrightarrow a  - \overrightarrow b ) - \overrightarrow b .(\overrightarrow a  - \overrightarrow b ) \\= {\overrightarrow a ^2} - \overrightarrow a .\overrightarrow b  - \overrightarrow b .\overrightarrow a  + {\overrightarrow b ^2} \\= {\overrightarrow a ^2} - 2\overrightarrow a .\overrightarrow b  + {\overrightarrow b ^2}. \\ + \, (\overrightarrow a  - \overrightarrow b )(\overrightarrow a  + \overrightarrow b ) \\= \overrightarrow a .(\overrightarrow a  - \overrightarrow b ) + \overrightarrow b .(\overrightarrow a  - \overrightarrow b ) \\= {\overrightarrow a ^2} - \overrightarrow a .\overrightarrow b  + \overrightarrow b .\overrightarrow a  - {\overrightarrow b ^2} \\= {\overrightarrow a ^2} - {\overrightarrow b ^2}.\end{array}\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết