Ôn tập toán 7

NT

1. Chứng minh rằng  từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) (với b+d \(\ne\) 0) ta suy ra được \(\frac{a}{b}=\frac{a+c}{b+d}\)

2. Cho a,b,c,d \(\ne\) 0 . Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) hãy suy ra tỉ lệ thức \(\frac{a-b}{a}=\frac{c-d}{c}\)

LF
2 tháng 10 2016 lúc 8:28

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

1)\(VT=\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)

\(VP=\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ (1) và (2) ->Đpcm

2)\(VT=\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)

\(VP=\frac{c-d}{c}=\frac{dk-d}{dk}=\frac{d\left(k-1\right)}{dk}=\frac{k-1}{k}\left(2\right)\)

Từ (1) và (2) ->Đpcm

Bình luận (0)
DS
9 tháng 10 2020 lúc 15:33

Hướng dẫn cách làm nè!
Đầu tiên làm ra nháp:
Xuất phát từ đầu bài: \(\frac{a}{b}\)=\(\frac{a+c}{b+d}\)
=> a.( b+d ) = b.( a+c ) {tích chéo}
=>ab+ad = ab+bc {phân phối}
=>ad = bc {rút gọn cùng chia cho ab}
=>\(\frac{a}{b}\)= \(\frac{c}{d}\) {tính chất của tlt}
_Đó là phần nháp, còn trình bày bạn chỉ cần chép từ dưới lên:
\(\frac{a}{b}\)=\(\frac{c}{d}\)
=> ad=bc
=> ab+ad=ab+bc
=> a.( b+d )= b. (a+c)
=> \(\frac{a}{b}\) = \(\frac{a+c}{b+d}\)

Còn ý b làm tương tự nha!
Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
DT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NC
Xem chi tiết
TH
Xem chi tiết
CD
Xem chi tiết
NT
Xem chi tiết