Chứng minh:
\(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+.....+\dfrac{1}{\sqrt{97}+\sqrt{99}}>\dfrac{9}{4}\)
1) Chứng minh rằng: \(1+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+...+\dfrac{1}{n\sqrt{n}}< 2\sqrt{2}\left(n\in N\right)\)
2) Chứng minh rằng: \(\dfrac{2}{3}+\sqrt{n+1}< 1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}< \dfrac{2}{3}\left(n+1\right)\sqrt{n}\)
3) \(2\sqrt{n}-3< \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}-2\)
4) \(\dfrac{\sqrt{2}-\sqrt{1}}{2+1}+\dfrac{\sqrt{3}-\sqrt{2}}{3+2}+...+\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)
Chứng minh rằng:
\(5\sqrt{2} < 1+\dfrac{1}{\sqrt{2}} + \dfrac{1}{\sqrt{3}} +...+\dfrac{1}{\sqrt{50}} < 10\sqrt{2}\)
Chứng minh rằng với mọi số nguyên dương n ta đều có \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+\dfrac{1}{5\sqrt{4}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Cho x,y,z >0. Chứng minh rằng :
\(\dfrac{\sqrt{xy}}{1+\sqrt{yz}}+\dfrac{1}{\sqrt{xy}+\sqrt{yz}}+\sqrt{\dfrac{2\sqrt{yz}}{1+\sqrt{xy}}}\ge2\)
Chứng minh \(\dfrac{1}{2\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+\dfrac{1}{6\sqrt{4}}+....+\dfrac{1}{2n\sqrt{n+1}}+\dfrac{1}{\sqrt{n+1}}>1\)
Em không rõ là > hay < 1 ấy ạ. Anh chị nào giúp em với
chứng minh \(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+\dfrac{1}{\sqrt{5}+\sqrt{6}}+...+\dfrac{1}{\sqrt{2023}+\sqrt{2024}}>22\)
Cho a,b,c Là 3 cạnh tam giác . Chứng minh rằng
\(\dfrac{1}{\sqrt{ab+bc}}+\dfrac{1}{\sqrt{bc+ca}}+\dfrac{1}{\sqrt{ca+ab}}\ge\dfrac{1}{\sqrt{a^2+bc}}+\dfrac{1}{\sqrt{b^2+ac}}+\dfrac{1}{\sqrt{c^2+ab}}\)
\(\dfrac{5}{\sqrt{7}+\sqrt{2}}-\dfrac{6}{\sqrt{7}-1}+\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)