Đại số lớp 6

PN

Chứng minh rằng nếu n và n2+2 là các số nguyên tố thì n3+2 cũng là số nguyên tố

MY
13 tháng 7 2018 lúc 15:50

Do n là số nguyên tố nên n là số tự nhiên.

- Xét: n = 3k + 1 \(\Rightarrow\) \(n^2\) + 2 = 9k\(^2\) + 6k + 3 \(⋮\) 3 (hợp số)

- Xét: n = 3k + 2 \(\Rightarrow\) \(n^2\) + 2 = 9k\(^2\) + 9k + 6 \(⋮\) 3 (hợp số)

- Xét: n = 3k \(\Rightarrow\) k = 1 (do n là số nguyên tố) \(\Rightarrow\) n\(^2\) + 2 = 11 (thỏa mãn giả thiết)

Ta có: n\(^3\) + 2 = 29

Mà 29 là số nguyên tố

\(\Rightarrow\) n\(^3\) + 2 là số nguyên tố (với n là số nguyên tố)

Bình luận (0)
H24
8 tháng 8 2018 lúc 10:44

Thay p thành n hộ mình nhé

Giải

1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố)
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố)
=>p^3+2=3^3+2=29 (là số nghuyên tố)
*>p>3
vì p là số nguyên tố =>p ko chia hết cho 3 (1)
p thuộc Z =>p^2 là số chính phương (2)
từ (1),(2)=>p^2 chia 3 dư 1
=>p^2+2 chia hết cho 3 (3)
mặt khác p>3
=>p^2>9
=>p^2+2>11 (4)
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài)
2/ Đặt Q(x)=P(x)-(x+1)
Q(1999)=P(1999)-(1999+1)=2000-2000=0
Q(2000)=P(2000)-(2000+1)=2001-2001=0
=>x-1999,x-2000 là các nghiệm của Q(x)
Đặt Q(x)=(x-1999)(x-2000).g(x)
Do P(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1
=>Q(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1
=>g(x)có dạng ax+b (a thuộc Z,a khác 0,-1)
=>Q(x) =(x-1999)(x-2000).( ax+b)
=>P(x)=(x-1999)(x-2000).( ax+b)+( x+1)
P(2001)=(2001-1999)(2001-2000)
(a.2001+b)+(2001+1)
=2(2001a+b)+2002
=4002a+2b+2002
P(1998)= (1998-1999)(1998-2000)(a.1998+b)
+(1998+1)
=2(a.1998+b)+1999
=3996a+2b+1999
=>P(2001)- P(1998)= 4002a+2b+2002-3996a-2b-1999
=6a+3
=3(a+2)
Do a thuộc Z,a khác -1
=>a+2 thuộc Z,a+2 khác 1
=>3(a+2) chia hết cho 3 , 3(a+2) khác 3
=>3(a+2) là hợp số
=> P(2001) - P(1998) là hợp số

Bình luận (0)

Các câu hỏi tương tự
MM
Xem chi tiết
PL
Xem chi tiết
DG
Xem chi tiết
DH
Xem chi tiết
ND
Xem chi tiết
NN
Xem chi tiết
TN
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết