Ôn tập toán 7

NA

Chứng minh rằng nếu \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\) thì \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)

LP
6 tháng 11 2017 lúc 23:08

\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{x}{4a-4b+6}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y+z}=\dfrac{c}{4x-4y+z}\)

Giải:

\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{x+2y+z}{9a}\left(1\right)\)

\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{2x+y-z}{9b}\left(2\right)\)

\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{4x-4y+z}{9c}\left(3\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)hay

\(\dfrac{a}{x+2y+z}=\dfrac{b}{2z+y-z}=\dfrac{c}{4x-4y+z}\) cùng = 9

Bình luận (0)

Các câu hỏi tương tự
NX
Xem chi tiết
NX
Xem chi tiết
PK
Xem chi tiết
AV
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết