Cho \(\dfrac{x}{\text{a}+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4b-4a-c}\)
Chứng minh rằng: \(\dfrac{a}{x+2y-z}=\dfrac{b}{2x+y+z}=\dfrac{c}{4x-4y-z}\)
Chứng minh rằng nếu \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\) thì \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
nếu \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
thì \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
cmr:
nếu \(\frac{x}{a+2b+c}=\frac{y}{2a+b+x}=\frac{z}{4a-4b-c}\)
thì \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
Cho \(\dfrac{x}{y}=\dfrac{z}{t}.\) Chứng minh rằng \(\dfrac{2x^2-3xy+5y^2}{2y^2+3xy}=\dfrac{2z^2-3zt+5t^2}{2t^2+3zt}\) ( x ; y ;z là các BT xác định)
Bài 1 : tìm x ; y ; z biết :
a, \(\dfrac{x+1}{3}\) = \(\dfrac{y-2}{5}\) = \(\dfrac{z+3}{7}\) và 2x-3y= -8
b, 2x = 4y ; 5x = 4z và x.y.z = 320
Bài 2 : Cho \(\dfrac{a+b}{c}\) = \(\dfrac{b+a}{a}\) = \(\dfrac{c+a}{b}\) . Tính giá trị biểu thức M = \(\dfrac{b+c}{2a}\) + \(\dfrac{c+a}{2b}\) + \(\dfrac{b+a}{2c}\)
Chứng minh rằng nếu \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\) trong đó \(a;b;c\ne0\) và khác nhau thì \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
Cho \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
Chứng minh rằng: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
a, cho \(\dfrac{3cy-4bz}{2x}=\dfrac{4az-2cx}{3y}=\dfrac{2bx-3ay}{4z}\)
CMR: \(\dfrac{a}{2x}=\dfrac{b}{3y}=\dfrac{c}{4z}\)
b, Cho \(\dfrac{7cy-5bz}{x}=\dfrac{2az-7cx}{y}=\dfrac{5bx-2ay}{z}\)
CMR : \(\dfrac{2a}{x}=\dfrac{5b}{y}=\dfrac{7c}{z}\)