Áp dụng bất đẳng thức tam giác có a+b>c
<=>ac+bc > c2 (c>0)
<=>a+b
Tương tự có:ab+cb>b2 ac+ab >a2ab+bc>b2,ac+ab>a2
Cộng các bất đẳng thức trên ra điều phải chứng minh
2(a2+b2+c2)-2(ab+bc+ac)<a2+b2+c2<=>2(a2+b2+c2)>a2+b2+c2 (dpcm)
Áp dụng bất đẳng thức tam giác có a+b>c
<=>ac+bc > c2 (c>0)
<=>a+b
Tương tự có:ab+cb>b2 ac+ab >a2ab+bc>b2,ac+ab>a2
Cộng các bất đẳng thức trên ra điều phải chứng minh
2(a2+b2+c2)-2(ab+bc+ac)<a2+b2+c2<=>2(a2+b2+c2)>a2+b2+c2 (dpcm)
Cho a, b, c, d, q, p thỏa mãn p2 + q2 - a2 - b2 - c2 - d2 > 0. Chứng minh rằng : ( p2 - a2 - b2 )( q2 - c2 - d2 ) ≤ ( pq- ac - bd )2
chứng minh rằng a,b,c là độ dài 3 cạnh của 1 tam giác thì
(b+c-a)(c+a-b)(a+b-c)\(\le\)abc
cho a2 + b2 ≤ 1. Chứng minh rằng ( ac + bd - 1 )2 ≥ ( a2 + b2 - 1 )(c2 + d2 -1 )
Cho a, b, c là độ dài các cạnh của tam giác, S là diện tích tam giác. Chứng minh:
\(S\ge\dfrac{1}{4}\sqrt{a^2b^2+b^2c^2+c^2a^2}\)
Sử dụng phương pháp biến đổi tương đương
Cho a, b, c là độ dài các cạnh của tam giác, S là diện tích tam giác. Chứng minh:
\(S=\dfrac{1}{4}\sqrt{a^4+b^4+c^4}\)
Sử dingj phương pháp biến đổi tương đương
Cho a, b, c là độ dài các cạnh của tam giác, S là diện tích tam giác. Chứng minh:
\(S\ge\dfrac{1}{4}\sqrt{a^4+b^4+c^4}\)
Sử dụng phương pháp biến đổi tương đương
. Cho a, b, c là các số thực dương có tổng bằng 3.
Chứng minh rằng : \(\sqrt{ab+c}+\sqrt{bc+a}+\sqrt{ca+b}\ge3\sqrt{2abc}\)
Cho 3 số dương a,b,c thỏa mãn a2 + b2 + c2 = 1
CMR : \(\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}\) ≥ \(\dfrac{3\sqrt{3}}{2}\)
Cho tam giác ABC có BC=a,AC=b,AB=c. Chứng minh rằng: \(3\left(a^3+b^3+c^3\right)+4abc\ge\dfrac{13}{27}\left(a+b+c\right)^3\)