Hình học lớp 8

TP

Chứng minh rằng: Mọi đường thẳng đi qua trung điểm của đường trung bình và cắt 2 đáy hình thang thì sẽ chia hình thang đó thành 2 hình thang có diện tích bằng nhau.

Trả lời nhanh nhen !!

HN
13 tháng 1 2017 lúc 17:22

A B C D I M N H K

Gọi đường thẳng MN đi qua trung điểm I của đường trung bình hình HK thang ABCD.

Ta sẽ chứng minh \(S_{AMND}=S_{MBCN}\)

Thật vậy, gọi h là đường cao của hình thang ABCD thì AMND, MBCN cũng là hình thang nên cũng có đường cao h.

Ta có \(S_{AMND}=\frac{1}{2}.\left(AM+DN\right).h=\frac{AM+DN}{2}.h=HI.h=\frac{HK}{2}.h\)

\(S_{MBCN}=\frac{1}{2}\left(MB+NC\right).h=\frac{MB+NC}{2}.h=IK.h=\frac{HK}{2}.h\)

Vậy \(S_{AMND}=S_{MBCN}\) . Từ đó suy ra đpcm.

Bình luận (1)

Các câu hỏi tương tự
NY
Xem chi tiết
LV
Xem chi tiết
PN
Xem chi tiết
VT
Xem chi tiết
BH
Xem chi tiết
DA
Xem chi tiết
BC
Xem chi tiết
BP
Xem chi tiết
NL
Xem chi tiết