Chương 2: TỔ HỢP. XÁC SUẤT

H24

Chứng minh rằng \(C_n^0+C_n^1+...+C_n^n=2^n\) (không dùng nhị thức Newton)

TN
3 tháng 10 2020 lúc 21:33

Xét tập A có n phần tử

Ta sẽ đếm số tập con của chúng bằng hai cách:

-Cách 1:

+Số tập con có 0 phần tử là: \(C^0_n\) tập

+Số tập con có 1 phần tử là: \(C^1_n\) tập

...

+Số tập con có 0 phần tử là: \(C^n_n\) tập

Khi đó vế trái của đẳng thức cần chứng minh là tổng số tập con của tập đó

Cách 2: Xét tập B là tập con của tập A

Một phần tử i bất kì thuộc A có thể thuộc B hoặc không thuộc B nên phần tử i đó có 2 khả năng xảy ra. Làm tương tự với n-1 phần tử còn lại thì vế phải của đẳng thức cần chứng minh là số tập con của tập A

Bình luận (0)
 Khách vãng lai đã xóa
TH
26 tháng 10 2020 lúc 23:04

Ta chứng minh bằng quy nạp.

Ta thấy công thức trên đúng với n = 1.

Giả sử nó đúng đến n. Ta chứng minh nó đúng với n + 1.

Nhận thấy VT là số tập hợp con của một tập hợp có n phần tử.

Nếu ta thêm 1 phần tử thì số tập hợp con tăng thêm chính bằng số tập hợp con của tập hợp đó.

Do đó số tập hợp con của một tập hợp có n + 1 phần tử là: \(2^n+2^n=2^{n+1}\).

Vậy công thức trên đúng với n + 1. Phép cm hoàn tất.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TM
Xem chi tiết
MT
Xem chi tiết
SZ
Xem chi tiết
VH
Xem chi tiết
TQ
Xem chi tiết
CH
Xem chi tiết
VQ
Xem chi tiết
AL
Xem chi tiết
HT
Xem chi tiết