\(\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(=\left(a^2x^2-2axby+b^2y^2\right)+\left(a^2y^2+2axby+b^2x^2\right)\)
\(=\left(ax-by\right)^2+\left(ay+bx\right)^2\)
Cái này trong SGK nè
BĐVT ta có:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)(1)
BĐVP ta có:
\(\left(ax-by\right)^2+\left(ay+bx\right)^2=a^2x^2+a^2y^2-2abxy+2abxy+b^2x^2+b^2y^2=a^2x^2+a^2y^2+b^2x^2+b^2y^2\left(2\right)\)
Từ (1) và (2) suy ra:( a2 + b2 ).( x2 + y2) = ( ax - by)2 + ( ay + bx)2