Violympic toán 6

NN

Cho A = \(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\). Chứng minh rằng A < \(\dfrac{7}{4}\)

SK
25 tháng 3 2017 lúc 13:21

Ta có:

A=\(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)

A<\(1+\dfrac{1}{2.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

A<\(1+\dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

A<\(\dfrac{5}{4}\)+\(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{99}-\dfrac{1}{100}\)

A<\(\dfrac{5}{4}+\dfrac{1}{2}-\dfrac{1}{100}\)

A<\(\dfrac{5}{4}+\dfrac{49}{100}\)

A<\(\dfrac{174}{100}\)<\(\dfrac{7}{4}\)

=>A<\(\dfrac{7}{4}\)

Tick giùm mink nha :D

Bình luận (1)
SW
26 tháng 4 2017 lúc 6:13

1/2^2<1/2.3,1/3^2<1/2.3,.....,1/100^2<1/99.100

A<1+1/2.3+1/3.4+....+1/99.100

A<1+1/2-1/3+1/3-1/4+1/4-1/5+....+1/99-1/100

A<1+1/2-1/100

A<3/2-1/100 mà 3/2=6/4

A<6/4-1/100<7/4

A<7/4

Bình luận (0)

Các câu hỏi tương tự
DX
Xem chi tiết
XT
Xem chi tiết
PH
Xem chi tiết
TL
Xem chi tiết
AW
Xem chi tiết
PH
Xem chi tiết
NH
Xem chi tiết
DR
Xem chi tiết
NK
Xem chi tiết