Violympic toán 8

H24

chứng minh \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)với a,b,c>0

MS
24 tháng 4 2019 lúc 11:44

Áp dụng bđt AM-GM:

\(\frac{a^3}{b}+ab\ge2a^2\)

\(\frac{b^3}{c}+bc\ge2b^2\)

\(\frac{c^3}{a}+ac\ge2c^2\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+bc+ac\ge2a^2+2b^2+2c^2\ge2ab+2ac+2bc\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ac\left(đpcm\right)\)

\("="\Leftrightarrow a=b=c\)

Bình luận (0)

Các câu hỏi tương tự
NB
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
Y
Xem chi tiết
TP
Xem chi tiết
PL
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết