Violympic toán 9

LB

Chứng minh :

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+.....+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\sqrt{n}-1\)

NL
20 tháng 8 2020 lúc 20:44

Ta có : \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

\(=\frac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+...+\frac{\sqrt{n-1}-\sqrt{n}}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n-1}-\sqrt{n}\right)}\)

\(=\frac{\sqrt{1}-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{n-1}-\sqrt{n}}{n-1-n}\)

\(=\frac{\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{n-1}-\sqrt{n}}{-1}\)

\(=\frac{\sqrt{1}-\sqrt{n}}{-1}=\sqrt{n}-\sqrt{1}=\sqrt{n}-1\)

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
KM
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
AJ
Xem chi tiết
DS
Xem chi tiết
NN
Xem chi tiết
NA
Xem chi tiết
DS
Xem chi tiết