Đề được sửa lại là: Cho \(x;y;z>0\) sao cho xyz = 1
cm: \(\dfrac{1}{x^2+y+z}+\dfrac{1}{y^2+x+z}+\dfrac{1}{z^2+x+y}\le\dfrac{3}{x+y+z}\)
Áp dụng BĐT bunhiacopxki ta có:\(\left(x^2+y+z\right)\left(1+y+z\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow\dfrac{1}{x^2+y+z}\le\dfrac{1+y+z}{\left(x+y+z\right)^2}\) (1)
bn tự chứng minh các BĐT tương tự (1) rồi cộng vế theo vế ta có:
VT= \(\dfrac{1}{x^2+y+z}+\dfrac{1}{y^2+x+z}+\dfrac{1}{z^2+x+y}\le\dfrac{3+2\left(x+y+z\right)}{\left(x+y+z\right)^2}\)
Bài toán cm hoàn tất khi \(\dfrac{3+2\left(x+y+z\right)}{\left(x+y+z\right)^2}\le\dfrac{3}{\left(x+y+z\right)}\)
\(\Leftrightarrow3+2\left(x+y+z\right)\le3\left(x+y+z\right)\Leftrightarrow x+y+z\ge3\)
Áp dụng BĐT cauchy cho x;y;z>0 ta có:
\(x+y+z\ge3\sqrt[3]{xyz}=3.\sqrt[3]{1}=3\)
Ta có đpcm