Violympic toán 8

BB

Chứng minh các đẳng thức:

a, \(\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}\) + \(\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}\)+ \(\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}\)=\(\dfrac{2}{a-b}\)+\(\dfrac{2}{b-c}+\dfrac{2}{c-a}\)

ND
27 tháng 3 2017 lúc 22:49

Ta có \(\dfrac{2}{a-b}\)+\(\dfrac{2}{b-c}\)+\(\dfrac{2}{c-a}\)

= (\(\dfrac{1}{a-b}\)+\(\dfrac{1}{c-a}\))+(\(\dfrac{1}{b-c}\)+\(\dfrac{1}{a-b}\))+(\(\dfrac{1}{c-a}\)+\(\dfrac{1}{b-c}\))

=(\(\dfrac{1}{a-b}\)- \(\dfrac{1}{a-c}\))+(\(\dfrac{1}{b-c}\)- \(\dfrac{1}{b-a}\))+(\(\dfrac{1}{c-a}\) - \(\dfrac{1}{c-b}\))

=\(\dfrac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right).\left(a-c\right)}\)+\(\dfrac{\left(b-a\right)-\left(b-c\right)}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{\left(c-b\right)-\left(c-a\right)}{\left(c-b\right).\left(c-a\right)}\)

= \(\dfrac{a-c-a+b}{\left(a-b\right).\left(a-c\right)}\)+\(\dfrac{b-a-b+c}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{c-b-c+a}{\left(c-b\right).\left(c-a\right)}\)

= \(\dfrac{-c+b}{\left(a-b\right).\left(a-c\right)}\)+ \(\dfrac{-a+c}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{-b+a}{\left(c-b\right).\left(c-a\right)}\)

= \(\dfrac{b-c}{\left(a-b\right).\left(a-c\right)}\)+\(\dfrac{c-a}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{a-b}{\left(c-b\right).\left(c-a\right)}\)

Chúc bạn học tốt.haha

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
PT
Xem chi tiết
MS
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
T8
Xem chi tiết
LH
Xem chi tiết