Violympic toán 8

DT

Chứng minh các bất đẳng thức:

a) \(\dfrac{a^2+a+1}{a^2-a+1}\) > 0

b) a2 + b2 + c2 + 3 ≥ 2(a + b + c)

LH
25 tháng 5 2021 lúc 8:49

a) \(\dfrac{a^2+a+1}{a^2-a+1}=\dfrac{\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}{\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)

Thấy tử và mẫu của phân số đều lớn hơn 0 => \(\dfrac{a^2+a+1}{a^2-a+1}>0\)

b)\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2a+1\right)+\left(c^2-2a+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (luôn đúng với mọi a,b,c)

Dấu = xra khi a=b=c=1

Bình luận (0)
NH
25 tháng 5 2021 lúc 8:52

b)

\(a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) ( Luôn đúng)

Dấu "=" xảy ra khi a=b=c=1

 

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
UN
Xem chi tiết
TV
Xem chi tiết
LL
Xem chi tiết
BB
Xem chi tiết
MM
Xem chi tiết
XX
Xem chi tiết