Ôn thi vào 10

29

Chứng minh √7 là số vô tỉ

H24
7 tháng 1 2022 lúc 15:27

Chứng minh bằng phương pháp phản chứng : 

Giả sử \(\sqrt{7}\)là một số hữu tỉ . Suy ra có thể biểu diễn dưới dạng \(\sqrt{7}=\frac{m}{n}\) (\(m,n\in Z,n\ne0\)) và \(\frac{m}{n}\)tối giản.

\(\Rightarrow7n^2=m^2\Rightarrow m^2⋮7\Rightarrow m⋮7\)(1)

Do đó, đặt m = 7k (\(k\in N\))

=> \(m^2=49k^2\Rightarrow n^2=7k^2\Rightarrow n^2⋮7\Rightarrow n⋮7\)(2)

Từ (1) và (2) Suy ra được m,n cùng chia hết cho 7

=> \(\frac{m}{n}\) chưa là phân số tối giản (vô lí vì trái với giả thiết)

Điều vô lí chứng tỏ \(\sqrt{7}\)là số vô tỉ.

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
GC
Xem chi tiết
LA
Xem chi tiết
PT
Xem chi tiết
HH
Xem chi tiết
NA
Xem chi tiết
PO
Xem chi tiết
TN
Xem chi tiết
PO
Xem chi tiết