Ôn tập toán 6

PN

Chứng minh :

1 + 1 = 2 

DB
26 tháng 5 2016 lúc 18:34

Đối với nhiều người, câu hỏi tưởng như vô cùng đơn giản: “Tại sao 1 + 1 = 2?” lại là một trong những câu hỏi khó trả lời nhất. Tại sao? Vì nó gần như là hiển nhiên. Bạn có 1 trái táo, sau đó có người cho bạn 1 trái nữa, thì bạn có 2 trái, tự nhiên nó đã như thế.

Chứng minh 1+1 không bằng 2

Tuy nhiên, nếu xét theo quan điểm của Toán học hiện đại, việc chứng minh “1 + 1 = 2” là thừa, vì nó không có bất kỳ một ý nghĩa nào nữa, thậm chí, người ta còn có thể chứng minh được rằng “1 + 1” không bằng 2.

Xin trình bày với các bạn một cách thức xây dựng mà ở đây “1 + 1” sẽ không bằng 2 nữa, mà bằng một cái gì đó tùy ý theo đúng quan điểm của Toán.

Trước hết, ta cần có một số khái niệm cơ bản sau:

1. Tập hợp

Đây là khái niệm cơ bản của Toán học, nên ta không có câu trả lời cho “Tập hợp là gì?”, mà khi nói tới Tập hợp, ta nói đến các đối tượng trong đó mà ta gọi làphần tử. Do đó, ta có cách để gọi Tập hợp theo tính chất của các phần tử trong đó.

Ví dụ: “Tập hợp số Tự nhiên” cho ta tập hợp có phần tử là các số 0, 1, 2, 3,…

“Tập hợp các phương tiên giao thông trên đường” cho ta tập hợp có các phần tử là xe ôtô, xe gắn máy, xe đạp…

Người ta thường ký hiệu tập hợp bằng các chữ in hoa, như tập hợp A, tập hợp B, tập hợp số tự nhiên N,…

Ở trong bài viết này, chúng ta sẽ xem xét một phép toán trên tập hợp là tích Descarte. Cho hai tập hợp A và B, tích Descarte của A và B ký hiệu là AxB, là một tập hợp gồm các phần tử có dạng (x; y) trong đó, x là phần tử của A, y là phần tử của B (theo đúng thứ tự trước và sau như thế).

2. Ánh xạ

Cho hai tập hợp X và Y, một phép tương ứng “mỗi phần tử x của X với duy nhất một phần tử y của Y” được gọi là một ánh xạ.

Khi đó, chúng ta cần lưu ý trong định nghĩa này, nếu x thuộc X thì phải có, và chỉ có 1 phần tử y thuộc Y tương ứng với x mà thôi, nếu có x mà không có y hoặc có 2 phần tử thuộc Y tương ứng thì đó không gọi là ánh xạ.

Người ta ký hiệu ánh xạ là f từ X và Y, ảnh của phần tử x thuộc X ta ký hiệu là f(x).

3. Xây dựng mô hình bài toán

Sau khi có đủ hai khái niệm trên ta xây dựng mô hình cho bài toán 1 + 1 không bằng 2 nhé:

Cho tập hợp số tự nhiên N và tập hợp tên các loại trái cây, ký hiệu là T. Khi đó, tích Descarte của tập N và N là NxN gồm các phần tử có dạng (a; b) (ta gọi là cặp số (a; b)), trong đó a, b là các số tự nhiên.

Xét ánh xạ f từ tập NxN vào tập T, khi đó, tương ứng với mỗi cặp số (a; b) là một tên của một loại trái cây nào đó, là f(a; b). Ta ký hiệu f(a; b) = a + b (lưu ý, a + b ở đây chỉ là một ký hiệu mà thôi).

Khi đó, xét cặp số (1; 1), nó sẽ tương ứng với một tên trái cây nào đó trong tập T (chắc chắc là phải có theo định nghĩa ánh xạ), giả sử đó là “Trái cam”. Khi đó ta được

f(1; 1) = “Trái cam”, hay nói cách khác, ta có “1 + 1 = Trái cam” (vì f(1; 1) = 1 + 1).

4. Kết luận

Từ mô hình trên, ta đã có được kết quả, 1 + 1 không phải là 2 nữa, mà nó có thể là bất cứ thức gì mà ta muốn. Ngoài ra, từ mô hình này ta cũng có được câu trả lời cho “Tại sao 1 + 1 = 2”. Đó là: đây chỉ là quy ước của những phép Toándo con người đã đặt ra mà thôi, nên con người hoàn toàn có thể thay đổi nó (ví dụ, thay vì ký hiệu dấu “+” thì người ta ký hiệu dấu “-”, khi đó ta sẽ có “1 – 1 = 2” thì về bản chất cũng không có gì thay đổi, chỉ có ký hiệu là thay đổi mà thôi).

Rất mong ý kiến đóng góp từ các bạn!

Bình luận (0)
LA
26 tháng 5 2016 lúc 18:36

Toán lớp 6

Thì đúng rồi

Ta cùng đếm ngón chân 

Bình luận (0)
H24
26 tháng 5 2016 lúc 18:38

1 chiếc đũa  + 1 chiếc đũa = 1 đôi đũa 

Bình luận (0)
TN
26 tháng 5 2016 lúc 19:48

cô dạy từ xưa đến nay là vậy còn mk ko bt chứng tỏ sao nữa haha

Bình luận (0)
PH
27 tháng 5 2016 lúc 8:27

ta có : 

1 chiếc lá +1 chiếc lá = 2 chiếc lá vậy : 

=> 1+1=2

Bình luận (0)
NT
27 tháng 5 2016 lúc 9:48

Đối với nhiều người, câu hỏi tưởng như vô cùng đơn giản: “Tại sao 1 + 1 = 2?” lại là một trong những câu hỏi khó trả lời nhất. Tại sao? Vì nó gần như là hiển nhiên. Bạn có 1 trái táo, sau đó có người cho bạn 1 trái nữa, thì bạn có 2 trái, tự nhiên nó đã như thế.

Chứng minh 1+1 không bằng 2

Tuy nhiên, nếu xét theo quan điểm của Toán học hiện đại, việc chứng minh “1 + 1 = 2” là thừa, vì nó không có bất kỳ một ý nghĩa nào nữa, thậm chí, người ta còn có thể chứng minh được rằng “1 + 1” không bằng 2.

Xin trình bày với các bạn một cách thức xây dựng mà ở đây “1 + 1” sẽ không bằng 2 nữa, mà bằng một cái gì đó tùy ý theo đúng quan điểm của Toán.

Trước hết, ta cần có một số khái niệm cơ bản sau:

1. Tập hợp

Đây là khái niệm cơ bản của Toán học, nên ta không có câu trả lời cho “Tập hợp là gì?”, mà khi nói tới Tập hợp, ta nói đến các đối tượng trong đó mà ta gọi làphần tử. Do đó, ta có cách để gọi Tập hợp theo tính chất của các phần tử trong đó.

Ví dụ: “Tập hợp số Tự nhiên” cho ta tập hợp có phần tử là các số 0, 1, 2, 3,…

“Tập hợp các phương tiên giao thông trên đường” cho ta tập hợp có các phần tử là xe ôtô, xe gắn máy, xe đạp…

Người ta thường ký hiệu tập hợp bằng các chữ in hoa, như tập hợp A, tập hợp B, tập hợp số tự nhiên N,…

Ở trong bài viết này, chúng ta sẽ xem xét một phép toán trên tập hợp là tích Descarte. Cho hai tập hợp A và B, tích Descarte của A và B ký hiệu là AxB, là một tập hợp gồm các phần tử có dạng (x; y) trong đó, x là phần tử của A, y là phần tử của B (theo đúng thứ tự trước và sau như thế).

2. Ánh xạ

Cho hai tập hợp X và Y, một phép tương ứng “mỗi phần tử x của X với duy nhất một phần tử y của Y” được gọi là một ánh xạ.

Khi đó, chúng ta cần lưu ý trong định nghĩa này, nếu x thuộc X thì phải có, và chỉ có 1 phần tử y thuộc Y tương ứng với x mà thôi, nếu có x mà không có y hoặc có 2 phần tử thuộc Y tương ứng thì đó không gọi là ánh xạ.

Người ta ký hiệu ánh xạ là f từ X và Y, ảnh của phần tử x thuộc X ta ký hiệu là f(x).

3. Xây dựng mô hình bài toán

Sau khi có đủ hai khái niệm trên ta xây dựng mô hình cho bài toán 1 + 1 không bằng 2 nhé:

Cho tập hợp số tự nhiên N và tập hợp tên các loại trái cây, ký hiệu là T. Khi đó, tích Descarte của tập N và N là NxN gồm các phần tử có dạng (a; b) (ta gọi là cặp số (a; b)), trong đó a, b là các số tự nhiên.

Xét ánh xạ f từ tập NxN vào tập T, khi đó, tương ứng với mỗi cặp số (a; b) là một tên của một loại trái cây nào đó, là f(a; b). Ta ký hiệu f(a; b) = a + b (lưu ý, a + b ở đây chỉ là một ký hiệu mà thôi).

Khi đó, xét cặp số (1; 1), nó sẽ tương ứng với một tên trái cây nào đó trong tập T (chắc chắc là phải có theo định nghĩa ánh xạ), giả sử đó là “Trái cam”. Khi đó ta được

f(1; 1) = “Trái cam”, hay nói cách khác, ta có “1 + 1 = Trái cam” (vì f(1; 1) = 1 + 1).

4. Kết luận

Từ mô hình trên, ta đã có được kết quả, 1 + 1 không phải là 2 nữa, mà nó có thể là bất cứ thức gì mà ta muốn. Ngoài ra, từ mô hình này ta cũng có được câu trả lời cho “Tại sao 1 + 1 = 2”. Đó là: đây chỉ là quy ước của những phép Toándo con người đã đặt ra mà thôi, nên con người hoàn toàn có thể thay đổi nó (ví dụ, thay vì ký hiệu dấu “+” thì người ta ký hiệu dấu “-”, khi đó ta sẽ có “1 – 1 = 2” thì về bản chất cũng không có gì thay đổi, chỉ có ký hiệu là thay đổi mà thôi).

Bình luận (0)
HM
27 tháng 5 2016 lúc 15:10

Vì 2-1=1 nên 1+1=2 (đpcm)

Bình luận (0)

Các câu hỏi tương tự
QD
Xem chi tiết
QS
Xem chi tiết
NA
Xem chi tiết
DT
Xem chi tiết
NN
Xem chi tiết
TN
Xem chi tiết
HL
Xem chi tiết
PL
Xem chi tiết
PP
Xem chi tiết