Ta có: \(\left(3k+1\right)^3=3\left(9k^3+9k^2+3k\right)+1\)
\(\left(3k+2\right)^3=3\left(9k^3+18k^2+12k+2\right)+2\)
Từ đó ta thấy \(x^3\) và \(x\) luôn có cùng số dư khi chia 3 (với mọi x là số tự nhiên)
\(\Rightarrow\) Số cách chọn để \(a^3+b^3+c^3\) chia hết cho 3 cũng giống số cách chọn để \(a+b+c\) chia hết cho 3
Chia tập S làm 3 tập: \(A=\left\{3;6;...;33\right\}\) gồm 11 phần tử chia hết cho 3
\(B=\left\{1;4;...;34\right\}\) gồm 12 phần tử chia 3 dư 1
\(C=\left\{2;5;...;35\right\}\) gồm 12 phần tử chia 3 dư 2
Bộ (a;b;c) được chọn thỏa mãn khi: (cả 3 số đều thuộc cùng 1 tập), (3 số thuộc 3 tập khác nhau)
Số cách chọn thỏa mãn:
\(C_{11}^3+C_{12}^3+C_{12}^3+C_{11}^1C_{12}^1C_{12}^1=...\)