Violympic toán 9

OO

Cho\(\left\{{}\begin{matrix}a,b,c>0\\a+b+c\le1\end{matrix}\right.\). cmr: \(\dfrac{1}{a^2}\)+\(\dfrac{1}{b^2}\)+\(\dfrac{1}{c^2}\)+\(\dfrac{2}{ab}\)+\(\dfrac{2}{bc}\)+\(\dfrac{2}{ac}\) \(\ge\)81

DD
9 tháng 9 2018 lúc 10:02

Ta có :

\(VT=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{4}{2ab}+\dfrac{4}{2bc}+\dfrac{4}{2ca}\)

Theo BĐT Cauchy schwarz dưới dạng engel ta có :

\(VT\ge\dfrac{\left(1+1+1+2+2+2\right)^2}{\left(a+b+c\right)^2}=\dfrac{81}{1}=81\)

Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Bình luận (1)

Các câu hỏi tương tự
AP
Xem chi tiết
PM
Xem chi tiết
TN
Xem chi tiết
TB
Xem chi tiết
VD
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
DC
Xem chi tiết
EO
Xem chi tiết