Tứ giác

PN

ChoΔABC vuông tại A, đường phân giác BD(D ∈ AC) . Từ D kẻ tia Dx ⊥ BC tại H. Tia BA cắt tia HD tại K. Chứng minh:

a) ΔABD = ΔHBD và BD ⊥ AH

b) ΔABC = ΔHBK

c) Tứ giác AHCK là hình thag cân

DX
8 tháng 8 2018 lúc 22:33

a)

Xét ΔvABD và ΔvHBD, ta có:

BD cạnh chung

∠ABD = ∠HBD ( BD là phân giác của ∠B )

⇒ ΔABD = ΔHBD ( ch-gn ) ( đpcm1 )

⇒ AB = HB ( cctứ ) ⇒ B thuộc đường trung trực của AH (1)

AD = HD ( cctứ ) ⇒ D thuộc đường trung trực của AH (2)

Từ (1), (2) ⇒ BD là đường trung trực của AH

⇒ BD ⊥ AH ( đpcm2 )

b)

Xét ΔvABC và ΔvHBK, ta có:

AB = HB ( cmt )

∠B chung

⇒ ΔABC = ΔHBK ( cgv-gn ) ( đpcm )

c)

ΔBKC: Hai đường cao CA và KH cắt nhau tại D

⇒ D là trực tâm của ΔBKC

⇒ BD là đường cao của ΔBKC

⇒ BD ⊥ KC

Vì BD ⊥ AH (cmt); BD ⊥ KC (cmt)

⇒ AH // KC

⇒ Tứ giác AHCK là hình thang

Hình thang AHCK có: AC = HK (ΔABC = ΔHBK)

⇒ Tứ giác ACHK là hình thang cân (đpcm)

Bình luận (0)

Các câu hỏi tương tự
KL
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
NK
Xem chi tiết
VK
Xem chi tiết
PD
Xem chi tiết