Chương 4: SỐ PHỨC

PA

cho z có phần thực là số nguyên và |z|-2|\(\overline{z}\)|=-7+3i+z. Tính môđun của số phức w=1-z+\(z^2\)

A |w| =\(\sqrt{37}\) B |w| =\(\sqrt{457}\) C |w|\(=\sqrt{425}\) D |w|=\(\sqrt{445}\)

MP
4 tháng 8 2018 lúc 14:23

đặc : \(z=a+bi\) với \(a;b\in R\)\(i^2=-1\)

ta có : \(\left|z\right|-2\left|\overline{z}\right|=-7+3i+z\Leftrightarrow\left|z\right|-2\left|\overline{z}\right|=\left(a-7\right)+\left(b+3\right)i\)

\(\Leftrightarrow-\sqrt{a^2+b^2}=\left(a-7\right)+\left(b+3\right)i\)

\(\Leftrightarrow\left[{}\begin{matrix}b+3=0\\a-7=-\sqrt{a^2+b^2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}b=-3\\a-7=-\sqrt{a^2+9}\end{matrix}\right.\)

\(\Rightarrow\left(a-7\right)^2=a^2+9\Leftrightarrow a^2-14a+49=a^2+9\Leftrightarrow a=\dfrac{20}{7}\)

\(\Rightarrow z=\dfrac{20}{7}-3i\)

\(\Rightarrow w=1-z+z^2=1-\dfrac{20}{7}+3i+\left(\dfrac{20}{7}-3i\right)^2\)

\(=1-\dfrac{20}{7}+3i+\dfrac{400}{49}-\dfrac{120}{7}i-9=\dfrac{-132}{49}-\dfrac{99}{7}i\)

\(\Rightarrow\left|w\right|=\sqrt{\left(\dfrac{-132}{49}\right)^2+\left(\dfrac{-99}{7}\right)^2}=???\)

khác tất cả các đáp án \(\Rightarrow\) ai xem thử có sai chổ nào không chỉ với .

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
VD
Xem chi tiết
PD
Xem chi tiết
MD
Xem chi tiết
SL
Xem chi tiết
LC
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết