Violympic toán 8

TN

cho x+y+z=0 Cm (y+z)/x + (x+z)/y +(x+y)/z +3=0

TA
18 tháng 3 2020 lúc 20:52

Ta có: \(x+y+z=0\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(z+x\right)\\z=-\left(x+y\right)\end{matrix}\right.\)

Đặt \(A=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}+3\)

Thay \(x=-\left(y+z\right),\) \(y=-\left(z+x\right),\) \(z=-\left(x+y\right)\) vào A, ta có:

\(A=\frac{y+z}{-\left(y+z\right)}+\frac{z+x}{-\left(z+x\right)}+\frac{x+y}{-\left(x+y\right)}+3\)

\(\Leftrightarrow A=\left(-1\right)+\left(-1\right)+\left(-1\right)+3\)

\(\Leftrightarrow A=-3+3\)

\(\Leftrightarrow A=0\) ( ĐPCM )

Bình luận (0)
 Khách vãng lai đã xóa
PT
18 tháng 3 2020 lúc 20:52

ta có:

\(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}+3\)

=\(\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1\)

\(=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

mà x+y+z=0

\(\Rightarrow\)dpcm

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
BB
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
BB
Xem chi tiết
DF
Xem chi tiết
NQ
Xem chi tiết
NN
Xem chi tiết