Violympic toán 8

H24

Cho x,y,z là số dương .Chứng minh rằng a)\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{z}\right)\left(z+\frac{1}{x}\right)\ge8\)

NL
31 tháng 3 2020 lúc 16:44

- Áp dụng BĐT cauchuy ta có :

\(\left\{{}\begin{matrix}x+\frac{1}{y}\ge2\sqrt{\frac{x}{y}}\\y+\frac{1}{z}\ge2\sqrt{\frac{y}{z}}\\z+\frac{1}{x}\ge2\sqrt{\frac{z}{x}}\end{matrix}\right.\)

- Nhân 3 vế trên lại ta được :

\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{z}\right)\left(z+\frac{1}{x}\right)\ge2\sqrt{\frac{x}{y}}.2\sqrt{\frac{y}{z}}.2\sqrt{\frac{z}{x}}\)

\(2\sqrt{\frac{x}{y}}.2\sqrt{\frac{y}{z}}.2\sqrt{\frac{z}{x}}=8\sqrt{\frac{x.y.z}{y.z.x}}=8.1=8\)

=> \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{z}\right)\left(z+\frac{1}{x}\right)\ge8\) ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
TH
Xem chi tiết
MN
Xem chi tiết
NH
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
MK
Xem chi tiết
MN
Xem chi tiết